Package: glmmML 1.1.7

glmmML: Generalized Linear Models with Clustering

Binomial and Poisson regression for clustered data, fixed and random effects with bootstrapping.

Authors:Göran Broström [aut, cre], Jianming Jin [ctb], Henrik Holmberg [ctb]

glmmML_1.1.7.tar.gz
glmmML_1.1.7.zip(r-4.5)glmmML_1.1.7.zip(r-4.4)glmmML_1.1.7.zip(r-4.3)
glmmML_1.1.7.tgz(r-4.5-x86_64)glmmML_1.1.7.tgz(r-4.5-arm64)glmmML_1.1.7.tgz(r-4.4-x86_64)glmmML_1.1.7.tgz(r-4.4-arm64)glmmML_1.1.7.tgz(r-4.3-x86_64)glmmML_1.1.7.tgz(r-4.3-arm64)
glmmML_1.1.7.tar.gz(r-4.5-noble)glmmML_1.1.7.tar.gz(r-4.4-noble)
glmmML_1.1.7.tgz(r-4.4-emscripten)glmmML_1.1.7.tgz(r-4.3-emscripten)
glmmML.pdf |glmmML.html
glmmML/json (API)

# Install 'glmmML' in R:
install.packages('glmmML', repos = c('https://goranbrostrom.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • openblas– Optimized BLAS

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortranopenblas

6.16 score 5 packages 215 scripts 4.4k downloads 60 mentions 9 exports 0 dependencies

Last updated 6 months agofrom:f776fc1ecc. Checks:11 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 18 2025
R-4.5-win-x86_64OKFeb 18 2025
R-4.5-mac-x86_64OKFeb 18 2025
R-4.5-mac-aarch64OKFeb 18 2025
R-4.5-linux-x86_64OKFeb 18 2025
R-4.4-win-x86_64OKFeb 18 2025
R-4.4-mac-x86_64OKFeb 18 2025
R-4.4-mac-aarch64OKFeb 18 2025
R-4.3-win-x86_64OKFeb 18 2025
R-4.3-mac-x86_64OKFeb 18 2025
R-4.3-mac-aarch64OKFeb 18 2025

Exports:ghqglmmbootglmmbootFitglmmMLglmmML.fitprint.glmmbootprint.glmmMLsummary.glmmbootsummary.glmmML

Dependencies:

Generalized linear models with clustering

Rendered fromglmmML.Rnwusingutils::Sweaveon Feb 18 2025.

Last update: 2020-05-28
Started: 2020-05-28